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Spectra obtained by t o t a l  infrared reflectance measurements f o r  

rock and mineral powders with varying degrees of surface roughness 

has permitted calculat ions of r e a l i s t i c  spec t ra l  emissivity curves 

f o r  these materials. 

deviations from a black-body i n  the 8 t o  U p r e g ;  

large as  that reported previously f o r  polished surfaces, diagnostic 

d i f fe ren t ia t ion  between acid (grani te )  and basic (dunite, or 

meteorite) rock type powders i n  a s i z e  l e s s  than 1 O O p i s  c l ea r ly  

feasible.  

together w i t h  direck emission measurements of quartz i n  various 

Although the  amplitude of the observed 

a r e  not as  

Total re f lec t ion  measurements of alumina and quartz 

surface conditions show diminishing d e t a i l  as the  p a r t i c l e  s i ze  

i s  reduced. 

information concerning the lunar  surface aggregate cha rac t e r i s t i c s  

By sui table  ca l ibra t ion  it would be possible t o  obtain 

by remote sensing. 

Consideration of an instrument capable of remote composifional 

mapping of the lunar surface by measurement of the  s a g n o s t i c  

spectral  emissivity curves r e su l t s  i n  t h e  recommendation of a 

modified Perkin-Elmer Model SG-4 Spectrophotometer. 

of the  constraints  imposed on the  design of t h i s  instrument f o r  

spectral  resolution, weight, signal-  to-noise ra t io ,  detector  

temperature and configuration, and power requirements is  presented 

together w i t h  the implications of these f ac to r s  on the obgectives 

of compositional mapping from a spacecraft. 

A discassion 
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INTRODUCTION 

Reflected infrared spectral  analysis  has been shown t o  characterize 

t h e  composition of geological assemblages (1) e 

infrared reflectance spectra have been obtained f o r  mineral and rock 

Recently, well-defined - 

types suspected t o  ex i s t  on the  moon (2) .  

ta ined f o r  minerals having polished surfaces, 

These measurements were ob- - 
Since it is  believed t h a t  

lunar  surface, a t  l e a s t  i n  par t ,  consis ts  of par t icu la te  matter, it is 

necessary t o  extend the  infrared spectral, data t o  cover a range of possible 

lunar  aggregate forms. Such data w i l l  permit an ear ly  assessment of the 

types of information most readily a t ta inable  from remote spacecraft 

exploration. To implement remote measurements of lunar surface propert ies  

during planned s a t e l l i t e  missions, consideration should. be given a t  t h i s  

t i m e  t o  adapting current infrared equipment and techniqeso The develop- 

ment of lightweight remote sensing devices u t i l i z i n g  avai lable  missi le  

power appears t o  be feas ib le  (3). - However, systems analysis  and consider- 

a t ion  of addi t ional  instrument design are necessary t o  define the  spec i f ic  

lunar  mission. 

This paper presents information per t inent  t o  two technical  areas 

associated with a successful study of the lunar  surface from a remote 

s a t e l l i t e .  

of lunar  materials of varying surface properties,  whereas the  second pay% 

The first pa r t  of the paper discusses the spec t ra l  response 

describes the  instrumentation design constraints  and p rac t i cab i l i t y  with 

regard t o  s a t e l l i t e  mission considerations. 
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BACKGROUND DISCUSS I ON 

It is well established that the thermal emission spectral character- 

istics of materials can be predicted from knowledge of intermolecular 

vibrations of molecules present on the surface of the material (4, - 5 ) .  
We have developed the utilization of this phenomenon for qualitative 

identification of geological surface composition(1). - It is reasonable, 

therefore, to believe that the surface of the moon can be identified by 

measurement of its thermal radiation as a function of wavelength provicied 

that the surface has a suitable physical form. The classic 1930 and 

1940 interpretations by Pettit and Nicholson (6, 7) from which they con- 

tend the moon is a black body have recently been shown to be in error 

(8, 2). At this time the precise thermal emission characteristics of 

- -  

the moon have not yet been identified, primarily because of the 9 to lop, 

infrared absorption by ozone in the earth's atmosphere. 

Our scientific thesis is: The spectral emissivity curve, €(A), 

(variations in the emissivity as a function of wavelength) can serve as 

a diagnostic fingerprint of a particular geological assemblage. In the 

past we have proven this thesis qualitatively from transmission measure- 

ments (10) - and quantitatively from reflection measurements of various 

rock and mineral compositions ( 2 ,  2). In the literature there is - 
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controversy with respect t o  the e f f ec t  of p a r t i c l e  s i z e  and surface 

roughness on emissivity. It has been observed t h a t  emissivity i s  

independent of p a r t i c l e  s i z e  (ll), whereas others have found t h a t  

emissivity increases as the  surface i s  roughened; it is  ser iously 

affected by porosity, and depends on material  geometry and surface 

s t a t e  (12, l3)* Because the  va l id i ty  of our s c i e n t i f i c  t h e s i s  f o r  

compositional mapping i s  dependent on observing deviations from black 

'body charac te r i s t ics  f o r  lunar surface materials i n  various s t a t e s  of 

aggregation, we have undertaken a study of the  spec t r a l  emissivity as 

a function of p a r t i c l e  size, 

- 

- -  

EXPERIMENTAL CONSIDERATIONS AND RESULTS 

Experimental d i f f i c u l t i e s  l i m i t  t he  use of emission measurements, 

hence i n  the past we have evaluated ~ ( h )  i nd i r ec t ly  by use of Kirchhoff's 

la-Vi 7 2 p - 7 i j  : ting t h e  ccnversion "2 r s f , ~ c i ~ ; x ,  ,Jai,a to efiiis- *__.  . - rom 

Fig,  1 it is  seen t h a t  the radiant energy incident on a substrate  can be 

ref lected,  scat tered,  absorbed, o r  transmitted, i .e e 

= I' + SI, + & +I te  Io P 

This i s  t r u e  f o r  any wavelength, hence upon division by t h e  incident 

energy, 

- 3 -  



Fig. 1 Kirchhoff's Law: I = I + 2 Is + &+ It 
O P  

where p ( h ) ,  s ( A ) ,  X ( h ) ,  and t ( X )  are respectively the r e f l ec t iv i ty ,  

sca t te r ing  coefficient,  absorptivity,  and transmittancy as a function of 

wavelength. A t  thermal equilibrium, the energy absorbed must be equal 

t o  t h a t  radiated,  o r  

E(>) = 1 - p ( h )  - s ( h )  - t ( r  ) .  ( 3 )  

It follows, f o r  opaque, polished materials where t( A )  and s (  2 )  = 0, 

c (  A )  can readi ly  be obtained from p( A ) ,  

the  l i t e r a t u r e  whether emissivity i s  independent of surface properties of 

the  material, the  emissivity-surface property relat ionship needs assess- 

ment f o r  i t s  appl icabi l i ty  t o  lunar measurements. 

3ecause it i s  not c l ea r  from 

- 4 -  
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By measurement of t h e  in tegra ted  r e f l ec t ance ,  including the sca t -  

t e r e d  components, it i s  possible t o  determine €(A) experimentally f o r  

powdery substances.  The experimental set-up employed i s  t h a t  developed 

by J .  T .  Bevans (14) and i s  shown i n  F igs ,  2 and 3. This apparatus  in-  

corpora tes  a black-body source with a temperature range of 500 t o  2000°F, 

two 7-1/2 degree of f -ax is  paraboloid f ront -sur face  mir rors ,  temperature 

con t ro l l ed  sample holder ,  and a Perkin E l m e r  Model 13C in f r a red  monochro- 

meter and de tec to r .  For t h i s  work, t h e  powders were compacted i n t o  a 

sample cup which permitted examination a t  a v e r t i c a l  sample i n c l i n a t i o n .  

The mir rors  and sample holder  were maintained a t  ambient temperature by 

conduction with c i r c u l a t e d  cooling water throughout t h e  measurements. 

- 

The s p e c t r a l  emiss iv i ty  curves obtained using t h i s  apparatus  and Eq. 3 

a r e  shown i n  F ig .  4 .  These curves c l e a r l y  i n d i c a t e  t h a t  d i f f e r e n t i a t i o n  

of ac id  and bas ic  type rocks,  g r a n i t e  and dun i t e ,  i s  poss ib le  i n  t h e  par- 

t i c l e  s i z e  range of loop, As might be expected, some of t h e  f i n e  s t r u c t u r e  

seen with polished specimens i s  o b l i t e r a t e d ,  or less d e f i n i t e ,  i n  t h e  spec- 

t r a  of powdered samples; however, t he  d iagnos t ic  u se  of t h e  s p e c t r a l  e m i s -  

s i v i t y  curve is demonstrated. 

The e f f e c t  of p a r t i c l e  s i ze  on t h e  ca l cu la t ed  emiss iv i ty  curves  f o r  

alumina i s  shown i n  Fig.  5. As t h e  p a r t i c l e  s i z e  of alumina goes down from 

sapphi re ,  po lyc rys t a l l i ne  p l a t e l e t s ,  coarse-grained mater ia1 ," to  a 2b 

powder,"the ca l cu la t ed  e m i s s i v i t y  curve approaches a black-body curve.  

I n  fact,"2y"alumina i s  almost a pe r f ec t  black body i n  t h e  wavelength range 

8~ t o  2 5 ~ .  Simi lar  s t u d i e s  of qua r t z ,  shown i n  F ig .  6 ,  reveal  t h e  same gen- 

e r a  1 it  ies : 

x 

Subsequent electromicroscope s t u d i e s  revealed t h i s  t o  have a mean par- 

t i c l e  s i z e  of about 200 angstroms (0.02 microns) 

7-  
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d e t a i l  of t h e  quartz r e s t r ah len  i s  evident  a t  a -325 mesh s i z e  ( 4 4 ~ ) ;  

however, some of t h e  f i n e  s t r u c t u r e  evident  f o r  a pol ished qua r t z  X-cut 

p l a t e  and 4 0 0 ~  quartz sand i s  missing. 

As mentioned above, d i r e c t  emission measurements possess experi-  

mental d i f f i c u l t i e s ,  such as sample temperature con t ro l  -- both abso lu te  

con t ro l  and homogeneity i n  t h e  source,  s t r a y  emission from heated mi r ro r s ,  

and energy absorption by t h e  monochrometer. I n  s p i t e  of these d i f f i c u l -  

t i e s ,  we have i n i t i a t e d  some emission experiments t o  test  t h e  d i agnos t i c  

u t i l i t y  of t h i s  method, f o r  as it i s  proposed, t h e  emission measurement 

i s  what w i l l  be obtained i n  a c t u a l  compositional mapping. Instead of 

t r ansmi t t i ng  through t h e  two f i l t e rs  t o  a d e t e c t o r ,  the  rad ian t  energy 

w a s  col l imated i n t o  a Perkin-Elmer Model 112 Double Pass In f r a red  Spec- 

t rometer ,  and the sample emission w a s  recorded as a func t ion  of wave- 

length .  

Emission da ta  f o r  s o l i d  qua r t z ,  K-feldspar, and dun i t e  appear i n  

F ig .  7. Preliminary emission da ta  f o r  quar tz  i n  var ious  p a r t i c l e  s i z e s  

i s  shown i n  F ig .  8. Quartz,  with a very dominant r e s t r a h l e n  a t  9.05P 

shows s t r u c t u r e  even a t  a p a r t i c l e  s i z e  of 1 t o  2 ~ ;  however, i t s  wave- 

length  loca t ion  i s  s h i f t e d  t o  s l i g h t l y  higher  wavelengths. For these 

data t h e  sample was maintained a t  about 520°K, and t h e  f u l l - s c a l e  re- 

sponse was 1pV. 

The experimental r e s u l t s  show t h a t  d iagnos t ic  d i f f e r e n t i o n  between 

var ious  rock types i s  f e a s i b l e  provided t h e  su r face  of t he  moon i s  not  

covered with a d u s t  with p a r t i c l e  s i z e  less than  about loll. Fur ther  , by 

e s t a b l i s h i n g  the  p rec i se  r e l a t i o n s h i p  of 8 ( A )  with p a r t i c l e  s i z e ,  i t  appears 

poss ib l e  t o  make some estimates of t h e  genera l  p a r t i c l e  s i z e  c h a r a c t e r i s t i c s  

of t h e  luna r  surface.  -8- 
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INSTRUMENTATION FOR LUNAR COMPOSITIONAL MAPPING 

For implementation of the  luna r  compositional mapping, several  approackes 

t o  the  instrumentation with spacecraft constraints  of simplicity, low weight, 

good resolution, high signal-to-noise r a t io ,  and low power requirement were 

considered. Ideally,  it is  desirable t o  obtain the  spectral  response f o r  s 

spec i f ic  location; however, due to  d i f f i c u l t i e s  i n  obtaining a multitude o f  

matched detectors f o r  every desired wavelength, and the l a g  i n  the develop- 

ment of photographic detectors suitable f o r  t h i s  purposes it has been expedi- 

t i ous  t o  consider an instrument which will scan wavelength. 

spacecraft i s  i n  motion, the areal  view a t  the start of the scan i s  not the 

same as t h a t  a t  the  end of t he  scan. 

o r b i t s  -- one a c i r cu la r  o r b i t  of about 100 miles f romthe  surface and one 

an e l l - i p t i ca l  o rb i t  w i t h  a perigee of 25 miles and apogee of 1000 miles - -  
a r e  shown together with the area subtended by an instrument w f t h  a f i e l d  of 

view of 2 . 4  x 10 

20 seconds. 

the NASA-sponsored lunar  photography experiment (15) 

f o r  the a r e a l  coverage from t h i s  type of experiment i s  

Because the 

In  Fig, 9 the  t r a j ec to r i e s  of two 

-4 0 s te rad ims ,  or an angle of 1 with a scanning r a t e  of' 

These o rb i t s  were chosen as typica l  of those t o  be u t i l i z e d  i n  

A general expression - 

where h 
P 

scan period, r 

fi is  the so l id  angle subtentedby the  instrument, and e i s  the  eccent r ic i ty  

of the e l l i p t i c a l  o rb i t ,  [ e  = (ha-h ) / (2r  +r +ha); e = 0 f o r  a c i r c l e ;  a t  the 

is  the a l t i t u d e  of t h e  spacecraft a t  perigee, s i s  the  spec t ra l  

is the  radius o f t h e  moon, ~m i s  the  gravity of t he  moon, m 

P m P  
apogee, when ha supplants 

shape is  a long rectangle 

dependent on the spec t ra l  

h the term ( l+e)  becomes ( l - e q  The resu l t ing  

with Pounded ends; the  length of these s t r i p s  i s  
P' 

scanning rate 
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Fig. 9 Field of V i e w  from Two Defined Orbits at a 20 sec Scanning Period 
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For a f i x e d n a n d  o r b i t  (hp) ,  the  scan rate i s  t h e  major va r i ab le  

t o  be changed t o  improve the  a rea l  reso lu t ion .  However, t r adeof f s  are 

required he re ;  namely, a s  t h e  scan rate i s  increased,  t h e  de t ec to r  can 

no t  respond t o  s m a l l  change i n  the spec t r a ,  t h e  instrument l a g s ,  and f i n e  

d e t a i l e d  spec t ra  are not obtained, i . e . ,  o p t i c a l  r e so lu t ion  i s  reduced. 

I n  a similar fash ion ,  reducing the view angle  reduces t h e  energy observed 

by t h e  instrument ,  thus reducing t h e  s ignal- to-noise  r a t i o .  Lowering t h e  

a l t i t u d e  improves t h e  areal reso lu t ion  without reducing t h e  energy a v a i l a b l e  

f o r  t h e  instrument.  

I t  would be poss ib le  t o  i n s t a l l  t h e  spectrometer on a gimballing 

mount t o  focus on a single loca t ion ;  however, i n  t he  i n t e r e s t  of s impl i c i ty  

t h i s  concept w a s  abandoned. One can r ead i ly  see the  d i f f i c u l t i e s  assoc ia ted  

wi th  a l t i t u d e  v a r i a t i o n s .  

The s ignal- to-noise  r a t i o  ob ta inable  i s  a c r i t i c a l  cons idera t ion ,  

p a r t i c u l a r l y  i f  d iagnos t ic  information a t  higher  wavelengths ( i . e . ,  20v 

i s  t o  be obtained.  To improve t h i s  r a t i o ,  new s e n s i t i v e  in f r a red  d e t e c t o r s  

(16) - must be employed; however, they requi re  cool ing t o  l i q u i d  neon or 

helium temperature,  which introduces f u r t h e r  complicat ions.  U s e  of l i q u i d  

helium s tored  i n  a reasonable s i z e  dewar precludes a mission i n  which use- 

f u l  information can be obtained beyond 5 days. This  i s  not too  much of a 

problem f o r  a moon o r b i t e r ,  f o r  with only a three-day journey two days of 

information could be obtained. (26 luna r  o r b i t s  -- over 8500 s p e c t r a l  

scans) .  A recent  advance i n  the s ta te -of - the-ar t  has produced a l i g h t -  

weight c r y o s t a t  with a l o w  power requirement i nd ica t ing  t h i s  technique 

may permit long dura t ion  experiments (17) .  - With t h e s e  cons idera t ions  i n  

mind, we have recommended t h e  incorporat ion and modif icat ion 

E l m e r  Model SG-4 Soectrophotometer shown i n  F ig .  10 f o r  t h i s  

of t h e  Perkin- 

type of 



mission ( 3 ) .  This instrument weighs less than 30 l b s .  including i t s  e lec-  - 
t r o n i c  control  feedback c i r c u i t r y ,  and r equ i r e s  10 w a t t s  power. Discussions 

with Perkin-Elmer Corp. i n d i c a t e  the  weight of t h i s  instrument can be re- 

duced s i g n i f i c a n t l y .  The o p t i c a l  set-up of t h e  instrument i s  seen sckemat- 

i c a l l y  i n  Fig.  11. U s e  of Cassegrainian t e l e scop ic  o p t i c s  permits a l a rge  

c o l l e c t o r  sur face  with an increased foca l  length .  The e l e c t r i c a l  c o n t r o l s  

block diagram for t h e  instrument i s  seen i n  Fig.  12.  U s e  of t h e  two-channel 

ou tput ,  one showing g r a t i n g  o r i e n t a t i o n  as a func t ion  of t i m e  and t h e  o the r  

showing de tec tor  output as a func t ion  of t i m e ,  permits t h e  ca l cu la t ion  of 

output v s .  wavelength curve.  An example of t he  response t y p i c a l l y  obtained 

from t h i s  instrument i n  t h e  2 t o  4p region i s  seen i n  F ig .  13. The g r a t i n g  

would be changed t o  operate between 7 and 14p f o r  t h e  compositional mapping 

mission. The s ignal- to-noise  r a t i o  obta inable  f o r  t h i s  instrument i s  c a l -  

cu la ted  from the following expression: 
" ED*A f i  t A A  

(5) 

Where E = i s  the  o p t i c a l  e f f i c i ency  of t h e  system = 0.80 ( r e f l e c t i v i t y  

of s i x  surfaces)  x 0.45 (g ra t ing  e f f ic iency)  x 0.60 ( f i l t e r  

transmission) x 0.90 (de tec to r  e f f ic iency)  = 0.195 

D* = t h e  d e t e c t o r  d e t e c t i v i t y  a t  a s p e c i f i c  wave length  2nd 

temperature 

A = a rea  of t h e  Cassegrainian c o l l e c t i n g  system (6.0 inch diam- 
C 

e t e r  less 2.3 inch diameter r e f l e c t i n g  surface)  = 155 c m 2  

-4 s t e rad ians  = f i e l d  of view = 2 .4  x 10 

t = s l i t  width = 0.1 cm 

Ah = s p e c t r a l  r e so lu t ion  = 0 . 0 5 4 ~  

-14- 
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Fig. 10 Perkin-Elmer Model SG-4 Zpectrophotometer 
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Fig. 11 Schematic Diagram of SG-4 Optical. System 
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\No (h?) = energy f l u x  available from lunar surface 

A = s l i t  height = 0.6 cm 

f, = modulating c a r r i e r  frequency = 300 cps 

A, = area of detector = 5.5 x 10 -4 2 c m  

For a lunar  surface temperature of 350' K and at a wave length of lop 

-3 using a cadmium-doped germanium detector a t  25' K, I l o ( h  ,t) = 2.0 x 10 

2 w a t t / c m  

1.2  p watt/cps 

5.5 x 10 

10 JzNIsp= .%. 

ITlS 
- p - ster  and D = 1.6 x 10 

, hence S/N = 342. 

cm-cpsl/Z,/%mtt 

A t  a -crave length of 2011, Wo ( A ,  t ) = 

10 .x. -4 2 w a t t / c m  -p-ster, and the same detector  ?;as D = 3.6 x 10 cm - 
cps'/'/watt Tnese calcula- 

t i o n s  indicate  that there is  suf f ic ien t  energy availcblc -LQ perx-it detection 

and measurement of the deviations from black body behavior. 

[NEP = 0.65 p watt/cps , hence S/U = 210, 
m S  



CONCLUSIONS AND RECOMMENDED APPROACH 

From the  work presented he re ,  w e  conclude t h a t  remote in f r a red  spec t r a l  

measurement of t he  lunar  sur face  w i l l  provide va luable  information f o r  

geologica l  compositional mapping 2nd may a l s o  introduce a method t o  de te r -  

mine i t s  general  p a r t i c u l a t e  s t r u c t u r e .  I f  t h e  average p a r t i c l e  s i z e  of 

t h e  Maria i s  less than about lop ,  i n f r a red  s p e c t r a l  emission sensing i s  an 

exce l l en t  technique f o r  accura te  temperature mapping. If  a r eas  of t h e  moon 

c o n s i s t  of a surface having a coarse  s t r u c t u r e  (bare  rocks f r e e  of d u s t ,  

such a s  those  recent ly  broken by metero i te  impact, or c l i f f s  t oo  s t e e p  t o  

hold a dus t  l aye r ) ,  we a r e  confident  t h a t  compositional mapping of these 

areas can be conducted. The information from these  remote measurements 

i s  bes t  when accomplished from an o r b i t i n g  s a t e l l i t e ,  because complete 

luna r  mapping i s  possible  a t  maximum a r e a l  r e so lu t ion .  

Some highly meaningful r e s u l t s  can a l s o  be obtained by measurements 

from a high a l t i t u d e  balloon; namely, 1) d i s t i n c t i o n  of t h e  "b2sic" rock 

types i n  t h e  lunar  sur face  ( i . e . ,  meteor i te ,  dun i t e ,  gabbro, etc.) and 

2) p rec i se  measurement of t he  ozone concent ra t ion  a s  a func t ion  of a l t i -  

tude .  Measurements from a h igh -a l t i t ude  bal loon could be performed sooner 

s ince  instrumental  development t i m e  i s  minimal a t  a cos t  lower than t h a t  

required f o r  a l una r  spacecraf t  mission. 
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